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Abstract
We study gauge theories based on Abelian p-forms on real compact hyperbolic
manifolds. An explicit formula for the trace anomaly corresponding to skew-
symmetric tensor fields is obtained, by using zeta-function regularization and
the trace tensor kernel formula. Explicit exact and numerical values of the
anomaly for p-forms of order up to p = 4 in spaces of dimension up to n = 10
are then calculated.

PACS numbers: 11.15.−q, 02.40.Vh

1. Introduction

The conformal deformations of the Riemannian metric and the corresponding anomaly play
an important role in quantum theories. The role of spacetimes singularity and of (conformal)
anomalies in quantum corrections to the energy–momentum tensor is very important in physics.
Such anomalies are associated with the scaling character of the effective action [1–3] and,
therefore, with the renormalization group. Among other applications of the anomaly, one
can mention string theory [4], the c-theorem and its generalizations [5–8], anomaly-induced
dynamics in quantum gravity and particle production in a gravitational field [9–11].

It is well known that the evaluation of the anomaly is actually possible for even-
dimensional spaces albeit its computation is extremely involved. The general structure
of such an anomaly in curved even-dimensional spaces has been actively studied (see, for
example, [12]). We briefly mention here an analysis related to this phenomenon for constant
curvature spaces. The calculation of the conformal anomaly for the sphere can be found
in [13]. Explicit computations of the anomaly (of the stress–energy tensor) for scalar and
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spinor quantum fields in compact hyperbolic spaces have been carried out in [14, 15] (see also
[16, 17]), using the zeta-function regularization method [18–20]. A detailed calculation for
the case of spheres can be found in [21, 22].

The purpose of this paper is to analyse the trace anomaly associated with tensor fields
on real hyperbolic spaces. We present a decomposition of the Hodge Laplacian and the
tensor kernel trace formula associated with free generalized gauge fields (p-forms). The main
ingredient required is a type of differential form structure on the physical, auxiliary or ghost
variables. We consider spectral functions and the trace anomaly associated with physical
degrees of freedom of the Hodge–de Rham operators on p-forms.

The trace anomaly on a conformaly flat geometry (elliptic or hyperbolic geometry, for
example) is completely expressed in terms of the Euler characteristic. The coefficient of the
Euler characteristic in the trace anomaly is to be viewed as a measure of the degrees of freedom
in the field theory, and it should decrease along the renormalization-group flow [23–25].

We calculate the trace anomaly for skew-symmetric tensor fields, and in a dynamical
theory, which yield in the end a generalization of the effective action, where such anomalies
are to be suppressed. It is important to know explicitly what these terms are, in order to take
them into account. We analyse the anomalous behaviour varying the dimensions and making
a comparison with conformal invariant scalars. Our results can be used in the anomaly-
induced effective action of tensor fields. In particular, anomaly-induced dynamics constitute
a fundamental ingredient in order to construct an effective theory of quantum gravity.

2. Exterior forms in hyperbolic spaces

We shall work with an n-dimensional compact real hyperbolic space X with universal covering
M and fundamental group �. We can represent M as the symmetric space G/K , where
G = SO1(n, 1) and K = SO(n) is a maximal compact subgroup of G. Then we regard � as
a discrete subgroup of G acting isometrically on M, and we take X to be the quotient space by
that action: X = �\M = �\G/K . Let τ be an irreducible representation of K on a complex
vector space Vτ , and consider the induced homogeneous vector bundle G ×K Vτ (the fibre
product of G with Vτ over K ) → M over M. Factorizing the vector bundle G ×K Vτ by the
left action of the discrete subgroup �, we get a vector bundle Eτ → �\M = X over X. The
natural Riemannian structure on M (therefore on X ) induced by the Killing form ( , ) of G
gives rise to a connection Laplacian L on Eτ . If �K denotes the Casimir operator of K, that is

�K = −
∑

y2
j (1)

for a basis {yj } of the Lie algebra k0 of K, where (yj , y�) = −δj�, then τ(�K) = λτ 1, for a
suitable scalar λτ . Moreover, for the Casimir operator � of G, with � operating on smooth
sections �∞Eτ of Eτ , one has

L = � − λτ 1 (2)

(see lemma 3.1 of [26]). For λ � 0, let

�∞(X,Eτ )λ = {s ∈ �∞Eτ | − Ls = λs} (3)

be the space of eigensections of L corresponding to λ. Here we note that since X is compact we
can order the spectrum of −L by taking 0 = λ0 < λ1 < λ2 < · · · , with limj→∞ λj = ∞. We
shall focus on the more difficult (and interesting) case when n = 2k is even, and we specialize
τ to be the representation τp of K = SO(2k) on �p

C
2k , say p �= k. It is convenient, moreover,

to work with the normalized Laplacian L = −c(n)L, where c(n) = 2(n − 1) = 2(2k − 1). L

has spectrum {c(n)λj ,mj }∞j=0, where the multiplicity mj of the eigenvalue c(n)λj is given by

mj = dim �∞(X,Eτ(p) )λj
. (4)



Forms on vector bundles and the conformal anomaly 2481

Let ωp, ϕp be exterior differential p-forms. Their invariant inner product is defined by

(ωp, ϕp)
def= ∫

X
ωp∧∗ϕp. The following properties for operators and forms hold: dd = δδ = 0,

δ = (−1)np+n+1 ∗ d∗, **ωp = (−1)p(n−p)ωp. The operators d and δ are adjoint to each other
with respect to this inner product for p-forms: (δωp, ϕp) = (ωp, dϕp). In quantum field
theory the Lagrangian associated with ωp takes the form: dωp ∧ ∗d ωp (gauge field) , and
δωp ∧ ∗δωp (co-gauge field). The Euler–Lagrange equations are supplied with the gauge
δωp = 0 (Lorentz gauge), or dωp = 0 (co-Lorentz gauge). These Lagrangians give possible
representations of tensor fields or generalized Abelian gauge fields. The two representations
of tensor fields are not completely independent, because of the well-known duality property
of exterior calculus which gives a connection between star-conjugated gauge and co-gauge
tensor fields. The gauge p-forms are mapped into the co-gauge (n−p)-forms under the action
of the Hodge ∗ operator. The vacuum-to-vacuum amplitude for the gauge p-form ωp becomes
[27]:

Z = N

∫
Dω exp[−(ω,Lpω)]

p∏
j=1

(Volp−j (det Lp−j )
(j+1)/2)(−1)j+1

(5)

where Lp is the Lagrangian on p-forms, and we need to factorize the divergent gauge group
volume and integrate over the classes of gauge transformations (ω → ω + dφ).

3. The trace formula applied to the tensor kernel

The space of smooth sections �∞Eτ of Eτ is just the space of smooth p-forms on X. We can
therefore apply the version of the trace formula developed by Fried in [28]. First we set up some
additional notation. For σp the natural representation of SO(2k − 1) on �p

C
2k−1, one has

the corresponding Harish–Chandra–Plancherel density given—for a suitable normalization of
the Haar measure dx on G—by

µσp(r) = π

24k−4[�(k)]2

(
2k − 1

p

)
Pσp

(r)r tanh(πr) (6)

for 0 � p � k − 1, where

Pσp
(r) =

p+1∏
�=2

[
r2 +

(
k − � +

3

2

)2
]

k∏
�=p+2

[
r2 +

(
k − � +

1

2

)2
]

(7)

is an even polynomial of degree 2k − 2. One has that Pσp
(r) = Pσ2k−1−p

(r) and

µσp
(r) = µσ2k−1−p

(r) for k � p � 2k − 1. Define the Miatello coefficients [29, 30] a
(p)

2�

for G = SO1(2k + 1, 1) by Pσp
(r) = ∑k−1

�=0 a
(p)

2� r2�, 0 � p � 2k − 1.
Let Vol(�\G) denote the integral of the constant function 1 on �\G with respect to the

G-invariant measure on �\G induced by dx. For 0 � p � n − 1 the Fried trace formula
applied to the kernel Kt = e−tLp holds [28]:

Tr(e−tLp ) = I
(p)

� (Kt ) + I
(p−1)

� (Kt ) + H
(p)

� (Kt ) + H
(p−1)

� (Kt ) (8)

where I
(p)

� (Kt ), H
(p)

� (Kt ) are the identity and hyperbolic orbital integrals, respectively,

I
(p)

� (Kt )
def= χ(1)Vol(�\G)

4π

∫
R

dr µσp
(r) exp

(−t
(
r2 + p + ρ2

0

))
(9)

H
(p)

� (Kt )
def= 1√

4πt

∑
γ∈C�−{1}

χ(γ )

j (γ )
tγ C(γ )χσp

(mγ ) exp

(
−t

(
ρ2

0 + p
) − t2

γ

4t

)
. (10)
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Here C� ⊂ � is a complete set of representations in � of its conjugacy classes, and C(γ )

is a well-defined function on � − {1} (for more details see [31]), ρ0 = (n − 1)/2, and
χσ (m) = trace(σ (m)) is the character σ for m ∈ SO(2n − 1). If n = 2k is even then
σp(0 � p � n − 1) is always irreducible; if n = 2k + 1 then every σp is irreducible except
for p = (n − 1)/2 = k, in which case σk is the direct sum of two spin- 1

2 representations
σ± : σk = σ + ⊕ σ−. For p = k, the representation τk of K = SO(2k) on �k

C
2k is not

irreducible: τk = τ +
k ⊕ τ−

k is the direct sum of two spin- 1
2 representations.

The case of the trivial representation. In the case of the trivial representation (p = 0, i.e.
for smooth functions) the measure µ(r) ≡ µ0(r) corresponds to the trivial representation.
Therefore, we take I

(−1)
� (Kt ) = H

(−1)
� (Kt ) = 0. Since σ0 is the trivial representation, one has

χσ0(mγ ) = 1. In this case, formula (8) reduces exactly to the trace formula for p = 0 [26, 16,
17, 31, 32],

I
(0)
� (Kt ) = χ(1) Vol (�\G)

4π

∫
R

dr µσ0(r) exp
(−t

(
r2 + ρ2

0

))
(11)

H
(0)
� (Kt ) = 1√

4πt

∑
γ∈C�−{1}

χ(γ )

j (γ )
tγ C(γ ) exp

(
−tρ2

0 − t2
γ

4t

)
. (12)

4. Spectral functions on p-forms and the trace anomaly

The transverse part of the skew-symmetric tensor is represented by the co-exact p-form
ω(CE)

p = δωp+1, which trivially satisfies δω(CE)
p = 0, and we denote by L(CE)

p the restriction of
the Laplacian on the co-exact p-form. The goal now is to extract the co-exact p-form on the
manifold which describes the physical degrees of freedom of the system. We get [33–35]

Tr exp
(−tL(CE)

p

) =
p∑

j=0

(−1)j
(
I

(p−j)

� (Kt ) + I
(p−j−1)

� (Kt ) + H
(p−j)

� (Kt )

+ H
(p−j−1)

� (Kt ) − bp−j

)
(13)

where bj are the Betti numbers. For constant conformal deformations of the Riemannian
metric gµν , the variation of the connected vacuum functional W can be expressed in terms
of the generalized zeta function ζ(s|A) associated with the Laplace–Beltrami operator A

[36, 37]:

δW = −ζ(0|A)log µ2 = (1/2)

∫
d(Vol)〈Tµν(x)〉δgµν(x) (14)

where µ is a renormalization mass parameter and 〈Tµν(x)〉 means that all connected vacuum
graphs of the stress–energy tensor Tµν(x) are to be included. Then equation (14) leads to the
result 〈

T µ
µ (x)

〉 = Vol−1ζ(0|A) (15)

where for S
n: Vol = 2π(n+1)/2Rn/(�((n + 1)/2), while for the compact manifold �\H

n:
Vol = Vol(�\G)Rn,R being the radius corresponding to the compact space.

Our first goal is to calculate the value of generalized zeta function

ζ
(
s|L(CE)

p

) = 1

�(s)

∫ ∞

0
dt t s−1 Tr exp

(−tL(CE)
p

) =
p∑

j=0

(−1)j

�(s)

∫ ∞

0
dt t s−1

× (
I

(p−j)

� (Kt ) + I
(p−j−1)

� (Kt ) + H
(p−j)

� (Kt ) + H
(p−j−1)

� (Kt ) − bp−j

)
. (16)
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The integrals related to the identity contribution can be written as follows:∫ ∞

0
dt t s−1I

(p−j)

� (Kt ) = χ(1)Vol(�\G)

22(n−1)�(n/2)2

(
n − 1
p − j

) n/2−1∑
�=0

a
(p−j)

2�

×
∫ ∞

o

dt t s−1 e−t (α−j)

∫
R

dr r2�+1 e−tr2
tanh(πr) (17)

where α ≡ p + ρ2
0 . Using the identities

1 − tanh(πr) = 2

1 + exp(2πr)

∫ ∞

0

dr r2�−1

1 + e2πr
= (−1)�−1

4�
(1 − 21−2�)B2� (18)

where B2� are the Bernoulli numbers, we obtain∫
R

drr2�+1 e−tr2
tanh(πr) = �!t−�−1 −

∞∑
k=0

(−1)�(1 − 2−2�−2k−1)tk

k!(� + k + 1)
B2(�+k+1) (19)

and∫ ∞

0
dt t s−1I

(p−j)

� (Kt ) = χ(1)Vol(�\G)

22(n−1)�(n/2)2

(
n − 1
p − j

) n/2−1∑
�=0

a
(p−j)

2�

×
{

�!�(s − � − 1)

(α − j)s−�−1
−

∞∑
k=0

(−1)�(1 − 2−2�−2k−1�(k + s))

k!(� + k + 1)

B2(�+k+1)

(α − j)k+s

}
. (20)

The contribution associated with the identity integral at the point s = 0 becomes

lim
s→0

1

�(s)

∫ ∞

0
dt t s−1I

(p−j)

� (Kt ) = χ(1)Vol(�\G)

22(n−1)�(n/2)2

(
n − 1
p − j

)

×
n/2−1∑
�=0

a
(p−j−1)

2�

(−1)�+1

� + 1
((1 − 2−2�−1)B2(�+1) + [α + j + 1]�+1). (21)

The hyperbolic orbital integrals can be rewritten in terms of McDonald functions Kν(z),

Kν(z) = 2−ν−1zν

∫ ∞

0
dt t−ν−1 exp(−t − z2/(4t)) |arg z| < π/2 z2 > 0 (22)

the result being∫ ∞

0
dt t s−1H

(p−j)

� (Kt ) =
∑

γ∈C�−{1}

χ(γ )√
πj (γ )

tγ C(γ )χσp−j
(mγ )

×
(

2
√

α + j

tγ

)−s+1/2

K−s+1/2(tγ
√

α − j). (23)

Analysis of the integral equation (23) gives the following result (see also [14–17]): the
terms associated with the hyperbolic orbital integrals vanish when s = 0. Finally, using
equations (15), (16) and (21), we get for the trace anomaly the explicit formula

〈
T µ

µ (x)
〉 = 1

(4π)n/2�(n/2)Rn

p∑
j=0

(−1)j

{
n/2−1∑
�=0

(−1)�+1

� + 1

(
n − 1
p − j

)

×
[
a

(p−j)

2� [(1 − 2−2�−1)B2(�+1) + (α − j)�+1]

+ a
(p−j−1)

2�

p − j

n − p
[(1 − 2−2�−1)B2(�+1) + (α − j − 1)�+1]

] }
(24)

which constitutes the main result of the present paper.
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Table 1. Exact and numerical values of the anomaly for the conformally invariant scalar field, in
dimensions n = 2 to n = 14 (we have set R = 1).

〈T µ
µ (x)〉c.i.s. Exact Numerical

n = 2 − 1
12π

−0.026 5258

n = 4 − 1
240π2 −4.221 72 × 10−4

n = 6 − 5
4032π3 −3.999 45 × 10−5

n = 8 − 23
34 560π4 −6.832 10 × 10−6

n = 10 − 263
506 880π5 −1.695 51 × 10−6

n = 12 − 133 787
251 596 800π6 −5.531 07 × 10−7

n = 14 − 157 009
232 243 200π7 −2.238 37 × 10−7

Table 2. Exact and numerical values of the anomaly for the family of spacetimes of dimension
n = 2 to n = 10 which possess a compact spatial section, corresponding to forms of order up to
p = 4.

〈T µ
µ (x)〉 p = 0 p = 1 p = 2 p = 3 p = 4

n = 2 − 1
12π

=
−0.026 5258

n = 4 29
240π2 = − 67

160π2 =
0.012 243 −0.042 4282

n = 6 − 1139
4032π3 = 2539

2016π3 = − 2005
1792π3 =

−0.009 110 74 0.040 6184 −0.036 085

n = 8 32 377
345 60π4 = − 1 368 853

2 764 80π4 = 101 665
414 72π4 = 118 459

345 60π4 =
0.009 617 53 −0.050 8269 0.025 1662 0.035 188

n = 10 − 2 046 263
5 068 80π5 = 16 454 263

6 758 40π5 = − 2 475 365
8 110 08π5 = − 34 196 177

7 096 320π5 = − 14 020 681
1 351 68π5 =

−0.013 1919 0.079 5582 −0.009 973 89 −0.015 7469 −0.338 958

The case of a conformally invariant scalar field. Restoring now the dependence on the
radius R, for the specific case of a minimally coupled scalar field of mass m, we have
p = j = 0, α ⇒ α + R2m2 and α = ρ2

0 . For the case of a conformally invariant scalar field,
we have α = ρ2

0 + (n − 2)R2R(x)/[4(n − 1)], where R(x) = −n(n − 1)R−2 is the scalar
curvature. Therefore, the final result in this case becomes

〈
T µ

µ (x)
〉 = 1

(4π)n/2�(n/2)Rn

n/2−1∑
�=0

(−1)�+1

� + 1
a2�[2−2�−2 + (1 − 2−2�−1)B2�+2]. (25)

This formula is in full agreement with a previous result obtained in [14] and constitutes a
check of our main formula equation (24). In fact, we obtain from this expression table 1 (note
a small misprint in the denominator of the last value given in the table in [14]).

Explicit and numerical values of the anomaly for p-forms. Using our equation (24), exact
explicit values and also numerical values of the anomaly corresponding to spaces of arbitrary
dimension n and forms of any order p are easily obtained, with the help of any standard
program as Matlab, Maple or Mathematica. Using Mathematica 5.0 on a laptop, in a question
of seconds we have obtained the following table (table 2) for the anomaly, where we have set
R = 1 and α = p + ρ2

0 , with ρ0 = (n − 1)/2.
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5. Conclusions

In order to obtain information about the trace anomaly in higher dimensions, a possible and
convenient way to proceed is to consider the anomaly in some specified background. Thus,
the anomaly has been intensively studied for spheres. In our case, we have studied gauge
theories based on Abelian p-forms on real compact hyperbolic manifolds, which are actually
in the same class of constant curvature manifolds as spheres. However, this does not mean
that the results are the same and, on the other hand, it is well known that the hyperbolic
geometry plays a very important role in quantum theory, specifically in the theory of extended
objects (string and brane theories) and cosmology. The quantum dynamic of tensor fields in
hyperbolic spaces is certainly feasible and worth studying.

Generally, the trace anomaly in even dimensions contains the Euler density and a number
of conformal covariant polynomials which involve the Weyl tensor and its derivatives. This
general result can be integrated on conformally flat manifolds, a result which leads to the
formula (15) of our paper. We have computed explicitly the trace anomaly for tensor fields on
vector bundles over real compact hyperbolic spaces using the analytic continuation provided
by the zeta function (or for the coefficient of the Euler density).

We have restricted ourselves to the position where the manifold is smooth and � is a
discrete subgroup of SO1(n, 1), acting freely and properly discontinuously on H

n. The terms
associated with hyperbolic orbital integrals do not contribute to the trace anomaly, as we have
shown above.

Explicit exact and numerical results for the anomaly corresponding to p-forms of orders
p = 0 to p = 4 in spaces of dimension n = 2 to n = 10 have been given in table 2. Both
the sign and the magnitude of the anomaly seem to change in a rather non-uniform way in the
cases considered, their absolute value being always less than 1 for the calculated cases (but
this can be shown to be not a bound for forms of higher order). In fact, one sees clearly, that
the absolute value of the conformal anomaly for p-forms definitely increases with the order
of the form in hyperbolic spaces of higher dimensionality, of the class considered.

As a particular case, we recover the formula for the conformally invariant scalar field in
any dimension and, in a similar way, a number of more general situations can be treated with
the same techniques as those described in this paper.
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